
Bayesian network modeling

1springuniversity.bc3research.org



Probabilistic vs. deterministic 
modeling approaches

Probabilistic

↑ Explanatory power (e.g., r2)
↓ Explanation why
Based on inductive reasoning 

Good when you:
• Want to explore for patterns
• Want to see if real-world patterns 
conform to theory
• Have incomplete datasets or high 
uncertainty

Pitfalls (among others):
• Putting too much faith into patterns 
found in the data that lack a reasonable 
theoretical foundation

Deterministic/mechanistic

↑ Explanation why
↓ Explanatory power (e.g., r2)
Based on deductive reasoning 

Good when you:
• Want to test/understand why 
something works the way it does
• Have strong understanding of how 
something works

Pitfalls (among others):
• Sloppy model construction 



Use of Bayesian modeling in ARIES
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• We used Bayesian Networks (BNs) in most of our early ARIES case studies 

(see http://aries.integratedmodelling.org/?page_id=546)

• Our current core global models are not BN models

• Early motivation to use BNs: 

- Great for expert elicitation, data-driven/inductive modeling

- Account for uncertainty

- Work well when data are incomplete or processes poorly known

• Current recommendation on using BNs: 

- Use physical/process models where those models are well known & trusted (Tier 1 

& 2 models)

- Use BNs for cases where you can take advantage of their strengths (Willcock et al. 

2018, biodiversity modeling in Sicily; recreation & streambank erosion in 

Hawai’i)

- Like any model, there’s a time & place for BNs; know and use them then! 

(intelligent modeling)

http://aries.integratedmodelling.org/?page_id=546


Recent examples of Bayesian models in ARIES
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Steps in a typical modeling process

1. Define system boundaries

2. Define model elements/variables

3. Build conceptual model

4. Identify potential feedback loops, thresholds, equilibria

5. Collect & prepare data to parameterize model

6. Formalize mathematical relationships

7. Testing, validation, calibration, sensitivity analysis



Bayes’ theorem

p(A|X) =                 p(X|A)*p(A)

p(X|A)*p(A) + p(X|~A)*p(~A)

How do we update the probability of A when we get new 
evidence, X?



10 chocolate chip

30 plain cookies

20 chocolate chip

20 plain cookies

J1
J2

Prior probabilities P(J1) = P(J2) = 0.5

Event E = observation of plain cookie

Conditional P(E|J1) = 30/40 = 0.75

ProbabilitiesP(E|J2) = 20/40 = 0.50

Bayesian Inference

Experiment Judy picks a jar at random, and then a cookie 

at random. The cookie is plain. What’s the probability that 

Judy picked from jar #1?



Experiment Judy picks a jar at random, and then a cookie 

at random. The cookie is plain. What’s the probability that 

Judy picked from jar #1?

10 chocolate chip

30 plain cookies

20 chocolate chip

20 plain cookies

J1
J2

Bayes P(J1|E) = P(E|J1) P(J1)

Theorem P(E|J1) P(J1)  +  P(E|J2) P(J2)

Posterior P(J1|E) = 0.75 x 0.5 =   

0.75 x 0.5  +   0.5 x 0.5

Probability =   0.6       

Bayesian Inference



Bayesian/probabilistic modeling

• Elements are assigned probabilities of occurrence (in 
the absence of data) – conditional and prior
probabilities

• Data replace prior and conditional probabilities when 
available

• Provides results as a distribution of values without 
requiring stochiastic variables



Uncertainty in deterministic models

• All else being equal (i.e., same input data & equations), 
you’ll get the same results every time

• Change input parameters, use stochastic inputs & run 
repeatedly to generate a distribution of results (Monte 
Carlo simulation)



Uncertainty in probabilistic models
Uncertainty estimates “built in” with prior probabilities & 
conditional probability tables



Guidelines for Bayesian modeling 
(Marcot et al. 2006)

1. Develop causal model (i.e., influence diagram/directed acyclic 
graph)

2. Discretize each node

3. Assign prior probabilities

4. Assign conditional probabilities (“alpha-level model”)

5. Peer review (“beta-level model”)

6. Test with data and train the BN (“gamma-level model”)



General tips (Marcot et al. 2006)

• Keep # of input (parent) nodes & their # of discrete states 
tractable relative to each child node

• Role of intermediate variables

• Avoid unnecessarily “deep” models (problems with 
uncertainty propagation)

• Using training data

• CPTs: can use equations or “peg the corners;” potential role 
when thresholds are known



Building the mathematical model: 
Probabilistic models

• Discretize variables

• Assign prior probabilities

• Assign conditional probabilities



Bayesian network training

• Bayesian training: Process where the system 
quantifies the relative contribution of parent 
nodes to child node in a BN

• User-specified CPT becomes much less relevant



Bayesian network training



Spatial resolution & Bayesian network training

Potential 

problems?



What if the system could determine 
the optimal model structure?

• Structural learning (see Willcock et al. 2018, “Machine-learning for ecosystem 
services,” Ecosystem Services)

• Built into ARIES using Weka (more on this Friday)
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Parting words

• Ockham’s Razor/parsimony principle

• Start simple, continuously test the model, and add 
features/complexity slowly and carefully

• Keep your eye on the ball (original goals)

• Use best available data & assumptions

• Peer review is always valuable

• Document everything!



For more information

• http://yudkowsky.net/rational/bayes

• Pearl, J. 1988. Probabilistic reasoning in intelligent systems: 
Networks of plausible inference. Morgan-Kaufmann: San 
Francisco, CA.

• Marcot et al. 2006 & McCann et al. 2006 articles (distributed 
with course materials)
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On Bayesian modeling

“Some would argue that incorporating beliefs about models other than those implied by empirical 
measurement is a subjective, or unscientific, approach.  In response, it could be stated that, 
certainly, Bayesianism has the potential for this problem to arise, and so one must have a strict 
‘code of conduct’ for prior distribution specification.  For example, making use of the outcomes of 
previous studies to provide prior beliefs is a reasonable scientific standpoint.  Indeed, it could be 
argued that it is unscientific to ignore these prior results!  Another way of avoiding subjectivity is 
to use non-informative priors in cases where prior information is unavailable or unobserved.  Of 
course, one could argue that even a non-informative prior gives us some form of information 
about the distribution of an unknown parameter: after all, a specific distribution is being supplied 
rather than the information that any distribution might apply.  However, in many cases non-
informative priors do make reasonable models for a state of no subjective knowledge.  In several 
‘text-book’ examples of Bayesian analysis, for example multiple linear regression analysis 
assuming normal error terms, the adoption of non-informative priors results in tests algebraically 
identical to classical inferential procedures.  In most cases, analysts are reasonably satisfied with 
regarding such classical approaches as ‘objective’.”

- Brundson & Willis 2002



Bayes’ theorem: cancer screening example
Convert the plain English to mathematical notation:

1% of women over 40 that are routinely screened have breast cancer
p (c) = 0.01

80% of women with breast cancer test positive for cancer with a 
mammography

p (m+|c) = 0.8
9.6% of women without breast cancer also test positive for cancer 
with a mammography (false positive)

p (m+|~c) = 0.096
We want to know the likelihood of cancer, given a positive test

p (c|m+) = ?



Bayes’ theorem: cancer screening example

p(c|m+) =                 p(m+|c)*p(c)

p(m+|c)*p(c) + p(m+|~c)*p(~c)

P (c|m+) = (0.8*0.01)/[(0.8*0.01) + (0.096*0.99)] = 0.07764 = 
7.8%

How do we update the probability of c when we get new 
evidence, m+?


