Bayesian network modeling

Probabilistic vs. deterministic modeling approaches

Probabilistic

- ↑ Explanatory power (e.g., r²)
- ↓ Explanation why

Based on inductive reasoning

Good when you:

- Want to explore for patterns
- Want to see if real-world patterns conform to theory
- Have incomplete datasets or high uncertainty

Pitfalls (among others):

 Putting too much faith into patterns found in the data that lack a reasonable theoretical foundation

Deterministic/mechanistic

↑ Explanation why
↓ Explanatory power (e.g., r²)
Based on *deductive reasoning*

Good when you:

- Want to test/understand why something works the way it does
- Have strong understanding of how something works

Pitfalls (among others):

Sloppy model construction

Use of Bayesian modeling in ARIES

- We used Bayesian Networks (BNs) in most of our early ARIES case studies (see http://aries.integratedmodelling.org/?page_id=546)
- Our current core global models are not BN models
- Early motivation to use BNs:
 - Great for expert elicitation, data-driven/inductive modeling
 - Account for uncertainty
 - Work well when data are incomplete or processes poorly known
- Current recommendation on using BNs:
 - Use physical/process models where those models are well known & trusted (Tier 1 & 2 models)
 - Use BNs for cases where you can take advantage of their strengths (Willcock et al. 2018, biodiversity modeling in Sicily; recreation & streambank erosion in Hawai'i)
 - Like any model, there's a time & place for BNs; know and use them then! (intelligent modeling)

Recent examples of Bayesian models in ARIES

Steps in a typical modeling process

- 1. Define system boundaries
- 2. Define model elements/variables
- 3. Build conceptual model
- 4. Identify potential feedback loops, thresholds, equilibria
- 5. Collect & prepare data to parameterize model
- 6. Formalize mathematical relationships
- 7. Testing, validation, calibration, sensitivity analysis

Bayes' theorem

$$p(A|X) = \frac{p(X|A)*p(A)}{p(X|A)*p(A) + p(X|^A)*p(^A)}$$

How do we update the probability of A when we get new evidence, X?

Bayesian Inference

Experiment Judy picks a jar at random, and then a cookie at random. The cookie is plain. What's the probability that Judy picked from jar #1?

Prior probabilities $P(J_1) = P(J_2) = 0.5$

Event E = observation of plain cookie

Conditional $P(E|J_1) = 30/40 = 0.75$ **Probabilities** $P(E|J_2) = 20/40 = 0.50$

Bayesian Inference

Experiment Judy picks a jar at random, and then a cookie at random. The cookie is plain. What's the probability that Judy picked from jar #1?

Bayes
$$P(J_1|E) = P(E|J_1) P(J_1)$$

Theorem $P(E|J_1) P(J_1) + P(E|J_2) P(J_2)$

Posterior
$$P(J_1|E) = \underbrace{0.75 \times 0.5}_{0.75 \times 0.5 \times 0.5} = \underbrace{0.75 \times 0.5}_{0.75 \times 0.5 \times 0.5}$$

Probability = 0.6

Bayesian/probabilistic modeling

- Elements are assigned probabilities of occurrence (in the absence of data) – conditional and prior probabilities
- Data replace prior and conditional probabilities when available
- Provides results as a distribution of values without requiring stochiastic variables

Uncertainty in deterministic models

- All else being equal (i.e., same input data & equations), you'll get the same results every time
- Change input parameters, use stochastic inputs & run repeatedly to generate a distribution of results (Monte Carlo simulation)

Uncertainty in probabilistic models

Uncertainty estimates "built in" with prior probabilities & conditional probability tables

Guidelines for Bayesian modeling (Marcot et al. 2006)

- 1. Develop causal model (i.e., influence diagram/directed acyclic graph)
- 2. Discretize each node
- 3. Assign prior probabilities
- 4. Assign conditional probabilities ("alpha-level model")
- 5. Peer review ("beta-level model")
- 6. Test with data and train the BN ("gamma-level model")

General tips (Marcot et al. 2006)

- Keep # of input (parent) nodes & their # of discrete states tractable relative to each child node
- Role of intermediate variables
- Avoid unnecessarily "deep" models (problems with uncertainty propagation)
- Using training data
- CPTs: can use equations or "peg the corners;" potential role when thresholds are known

Building the mathematical model: Probabilistic models

Discretize variables

Assign prior probabilities

Assign conditional probabilities

	VegetationType	□ OakWoodland														
	PercentVegetationCoverClass															
	Annual Maximum Temperature	VeryHighA	High Annual	Moderate A	VeryHighA	High Annual	Moderate A	VeryHighA	High Annual	Moderate A	VeryHighA	High Annual	Moderate A	VeryHighA	High Annual	ModerateA
	→ HighEvapotranspiration	0.2	0.1	0.1	0.15	0.05	0.05	0.15	0.05	0.05	0.1	0.05	0.05	0	0	0
Г	ModerateEvapotranspiration	0.7	0.7	0.6	0.7	0.75	0.7	0.6	0.6	0.5	0.45	0.4	0.3	0.4	0.3	0.2
	LowEvapotranspiration	0.1	0.2	0.3	0.15	0.2	0.25	0.25	0.35	0.45	0.45	0.55	0.65	0.6	0.7	0.8

Bayesian network training

- Bayesian training: Process where the system quantifies the relative contribution of parent nodes to child node in a BN
- User-specified CPT becomes much less relevant

Bayesian network training

Spatial resolution & Bayesian network training

What if the system could determine the optimal model structure?

- Structural learning (see Willcock et al. 2018, "Machine-learning for ecosystem services," Ecosystem Services)
- Built into ARIES using Weka (more on this Friday)

Parting words

- Ockham's Razor/parsimony principle
- Start simple, continuously test the model, and add features/complexity slowly and carefully
- Keep your eye on the ball (original goals)
- Use best available data & assumptions
- Peer review is always valuable
- Document everything!

For more information

- http://yudkowsky.net/rational/bayes
- Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan-Kaufmann: San Francisco, CA.
- Marcot et al. 2006 & McCann et al. 2006 articles (distributed with course materials)

On Bayesian modeling

"Some would argue that incorporating beliefs about models other than those implied by empirical measurement is a subjective, or unscientific, approach. In response, it could be stated that, certainly, Bayesianism has the potential for this problem to arise, and so one must have a strict 'code of conduct' for prior distribution specification. For example, making use of the outcomes of previous studies to provide prior beliefs is a reasonable scientific standpoint. Indeed, it could be argued that it is unscientific to ignore these prior results! Another way of avoiding subjectivity is to use non-informative priors in cases where prior information is unavailable or unobserved. Of course, one could argue that even a non-informative prior gives us some form of information about the distribution of an unknown parameter: after all, a specific distribution is being supplied rather than the information that any distribution might apply. However, in many cases noninformative priors do make reasonable models for a state of no subjective knowledge. In several 'text-book' examples of Bayesian analysis, for example multiple linear regression analysis assuming normal error terms, the adoption of non-informative priors results in tests algebraically identical to classical inferential procedures. In most cases, analysts are reasonably satisfied with regarding such classical approaches as 'objective'."

- Brundson & Willis 2002

Bayes' theorem: cancer screening example

Convert the plain English to mathematical notation:

1% of women over 40 that are routinely screened have breast cancer

$$p(c) = 0.01$$

80% of women with breast cancer test positive for cancer with a mammography

$$p(m+|c) = 0.8$$

9.6% of women without breast cancer also test positive for cancer with a mammography (false positive)

$$p(m+|^c) = 0.096$$

We want to know the likelihood of cancer, given a positive test

$$p(c|m+) = ?$$

Bayes' theorem: cancer screening example

$$p(c|m+) = p(m+|c)*p(c)$$

 $p(m+|c)*p(c) + p(m+|^c)*p(^c)$

$$P(c|m+) = (0.8*0.01)/[(0.8*0.01) + (0.096*0.99)] = 0.07764 = 7.8%$$

How do we update the probability of c when we get new evidence, m+?