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Probabilistic vs. deterministic
modeling approaches

Probabilistic

1 Explanatory power (e.g., r?)
| Explanation why
Based on inductive reasoning

Good when you:

* Want to explore for patterns

* Want to see if real-world patterns
conform to theory

* Have incomplete datasets or high
uncertainty

Pitfalls (among others):
 Putting too much faith into patterns
found in the data that lack a reasonable

theoretical foundation :0

Deterministic/mechanistic

1 Explanation why
| Explanatory power (e.g., r?)
Based on deductive reasoning

Good when you:

* Want to test/understand why
something works the way it does

* Have strong understanding of how
something works

Pitfalls (among others):
* Sloppy model construction



Use of Bayesian modeling in ARIES

We used Bayesian Networks (BNs) in most of our early ARIES case studies
(see http://aries.integratedmodelling.org/?page id=546)

Our current core global models are not BN models

Early motivation to use BNSs:
- Great for expert elicitation, data-driven/inductive modeling
- Account for uncertainty

- Work well when data are incomplete or processes poorly known
Current recommendation on using BNs:

- Use physical/process models where those models are well known & trusted (Tier 1
& 2 models)

- Use BNs for cases where you can take advantage of their strengths (Willcock et al.
2018, biodiversity modeling in Sicily; recreation & streambank erosion in
Hawai'i)

- Like any model, there’s a time & place for BNs; know and use them then!
(intelligent modeling) p
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http://aries.integratedmodelling.org/?page_id=546

Recent examples of Bayesian models in ARIES
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Steps in a typical modeling process

Define system boundaries

Define model elements/variables

Build conceptual model

ldentify potential feedback loops, thresholds, equilibria
Collect & prepare data to parameterize model
Formalize mathematical relationships

N O U kWD E

Testing, validation, calibration, sensitivity analysis
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Bayes’ theorem

p(A[X) = p(X|A)*p(A)
p(X|A)*p(A) + p(X]|~A)*p(~A)

How do we update the probability of A when we get new
evidence, X?



Bayesian Inference

Experiment Judy picks a jar at random, and then a cookie
at random. The cookie is plain. What's the probability that
Judy picked from jar #17

Prior probabilities P(J,) = P(J,) =0.5

Event E = observation of plain cookie

Conditional P(E|J;) =30/40 =0.75
ProbabilitiesP(E|J,) = 20/40 = 0.50



Bayesian Inference

Experiment Judy picks a jar at random, and then a cookie
at random. The cookie is plain. What's the probability that
Judy picked from jar #17

Bayes P(J,|E) = P(E|J,) P(J,)
Theorem P(E|J,) P(J,) + P(E|JI,) P(J,)
Posterior P(J,|E) = 0.75x0.5 =

0.75x0.5 + 05x0.5

Probability 0.6



Bayesian/probabilistic modeling

« Elements are assigned probabilities of occurrence (in

the absence of data) — conditional and prior
probabilities

« Data replace prior and conditional probabilities when
available

 Provides results as a distribution of values without
requiring stochiastic variables
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Uncertainty in deterministic models

« All else being equal (i.e., same input data & equations),
yvou’ll get the same results every time

« Change input parameters, use stochastic inputs & run

repeatedly to generate a distribution of results (Monte
Carlo simulation)



Uncertainty in probabilistic models

Uncertainty estimates “built in” with prior probabilities &
conditional probability tables
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Guidelines for Bayesian modeling
(Marcot et al. 2006)

Develop causal model (i.e., influence diagram/directed acyclic
graph)

Discretize each node

Assign prior probabilities

Assign conditional probabilities (“alpha-level model”)

Peer review (“beta-level model”)

Test with data and train the BN (“gamma-level model”)
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General tips (Marcot et al. 2006)

Keep # of input (parent) nodes & their # of discrete states
tractable relative to each child node

Role of intermediate variables

Avoid unnecessarily “deep” models (problems with
uncertainty propagation)

Using training data
CPTs: can use equations or “peg the corners;” potential role
when thresholds are known
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Building the mathematical model:
Probabilistic models

Discretize variables

* Assign prior probabilities

* Assign conditiona
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Bayesian network training

 Bayesian training: Process where the system
guantifies the relative contribution of parent
nodes to child node in a BN

* User-specified CPT becomes much less relevant
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Bayesian network training
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Spatial resolution & Bayesian network training

Potential C,_y

problems?




What if the system could determine
the optimal model structure?

® Structural learning (see Willcock et al. 2018, “Machine-learning for ecosystem
services,” Ecosystem Services)

® Built into ARIES using Weka (more on this Friday)




Parting words

Ockham’s Razor/parsimony principle

Start simple, continuously test the model, and add
features/complexity slowly and carefully

Keep your eye on the ball (original goals)
Use best available data & assumptions
Peer review is always valuable
Document everything!
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For more information

* http://yudkowsky.net/rational/bayes

* Pearl, J. 1988. Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan-Kaufmann: San
Francisco, CA.

 Marcot et al. 2006 & McCann et al. 2006 articles (distributed
with course materials)
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On Bayesian modeling

“Some would argue that incorporating beliefs about models other than those implied by empirical
measurement is a subjective, or unscientific, approach. In response, it could be stated that,
certainly, Bayesianism has the potential for this problem to arise, and so one must have a strict
‘code of conduct’ for prior distribution specification. For example, making use of the outcomes of
previous studies to provide prior beliefs is a reasonable scientific standpoint. Indeed, it could be
argued that it is unscientific to ignore these prior results! Another way of avoiding subjectivity is
to use non-informative priors in cases where prior information is unavailable or unobserved. Of
course, one could argue that even a non-informative prior gives us some form of information
about the distribution of an unknown parameter: after all, a specific distribution is being supplied
rather than the information that any distribution might apply. However, in many cases non-
informative priors do make reasonable models for a state of no subjective knowledge. In several
‘text-book’ examples of Bayesian analysis, for example multiple linear regression analysis
assuming normal error terms, the adoption of non-informative priors results in tests algebraically
identical to classical inferential procedures. In most cases, analysts are reasonably satisfied with

7 n

regarding such classical approaches as ‘objective’.
- Brundson & Willis 2002
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Bayes’ theorem: cancer screening example

Convert the plain English to mathematical notation:

1% of women over 40 that are routinely screened have breast cancer
p (c)=0.01

80% of women with breast cancer test positive for cancer with a
mammography

p(m+|c)=0.8
9.6% of women without breast cancer also test positive for cancer
with a mammography (false positive)

p (m+|~c) =0.096
We want to know the likelihood of cancer, given a positive test
p(c|m+)="
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Bayes’ theorem: cancer screening example

p(c|m+) = p(m+]c)*p(c)
p(m+|c)*p(c) + p(m+|~c)*p(~c)

P (c|m+) = (0.8*0.01)/[(0.8*0.01) + (0.096*0.99)] = 0.07764 =
7.8%

How do we update the probability of c when we get new
evidence, m+? (,
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