Sediment regulation model

Overview

- This model quantifies potential soil erosion with \& without vegetation using the Revised Universal Soil Loss Equation (RUSLE, Renard 1997)
- Difference between potential soil loss with \& without vegetation = protective role of vegetation in reducing erosion (the ecosystem service)
- Key limitations:
- Applies only to rill erosion; does not estimate gully, streambank, or mass erosion
- Originally developed for agricultural lands in the U.S., but typically used in wide variety of settings

Overview

- $\mathrm{A}=\mathrm{R}^{*} \mathrm{~K} * \mathrm{LS}{ }^{*} \mathrm{C}^{*} \mathrm{P}$, where:
- A - soil loss (T/ha),
- R-rainfall runoff erosivity,
- K - soil erodibility,
- LS - slope steepness and length
- C-cover management,

Model Flowchart

R: Rainfall-runoff Erosivity

- Typically modeled using event-based rainfall data (how intense are the rainstorms?); reasonable quality global data exist (JRC 2017)
- Measurement in (MJ*mm)/(ha*h); if using
 own data make sure data you know whether data are metric or English system (units: $\left.100 * f t-T^{*} i n\right) /\left(a c^{*} h r^{*} y e a r\right)$, can convert, but units are often unusually poorly labeled)

K: Soil Erodibility

- At least 3 ways to calculate:

1. \% sand, silt, clay, organic matter equation (Williams 1995)
2. Soil texture class \& organic matter lookup table (Stone \& Hilborn 2012)
3. \% sand, silt, clay equation (Ashiagbor et al. 2012)

- We use $1^{\text {st }}$ method; gives outputs using global data that best match local datasets
- Measurement in (T*h)/(MJ*mm); if using own data make sure data you know whether data are metric or English system (units: ($\left.\mathrm{T}^{*} \mathrm{ac} * \mathrm{~h}\right) /\left(100^{*} \mathrm{ac} * \mathrm{ft}-\mathrm{T}^{*} \mathrm{in}\right)$, can convert, but units are often unusually poorly labeled)

K: Soil Erodibility

@documented(sediment.erodibility)

model soil:SoilErodibility

observing
percentage of soil:Sand in soil:TopSoil im:Volume named sand_percentage,
percentage of soil:Silt in soil:TopSoil im:Volume named silt_percentage,
percentage of soil:Clay in soil:TopSoil im:Volume named clay_percentage,
percentage of chemistry:Carbon in soil:TopSoil im:Mass named soil_organic_matter_percentage
set to [(clay_percentage + silt_percentage == 0)?0:(
(0.2 + 0.3 * (Math.exp(-0.256 * sand_percentage * (1 - (silt_percentage / 100))))) *
((silt_percentage / (clay_percentage + silt_percentage))**0.3) *
(1 - ((0.0256 * soil_organic_matter_percentage)/(soil_organic_matter_percentage + Math.exp(3.72 - (2.95 * soil_organic_matter_percentage))))) * (1 - (0.7 * (1 - (sand_percentage / 100))) / ((1 - (sand_percentage / 100)) + Math.exp(-5.51 + (22.9 * (1 - sand_percentage / 100)))))) *
).
0.1317
];

English-Metric conversion factor

LS: Slope Steepness \& Length

- Multiple methods for computation (Panagos et al, 2015; Phinzi \& Ngetar, 2019)
- Unitless
- Key inputs are slope and contributing area (Van Remortel et al, 2004)
- Sensitive to DEM resolution
- Working on update - current results too large

model soil:SlopeSteepnessAndLength
 observing

geography:Slope in degree_angle named slope,
hydrology:ContributingArea in $\mathrm{m}^{\wedge} 2$ named contributing_area
on definition set to [
Math.pow((contributing_area * space.width)/22.1, 0.4) * Math.pow(Math.sin(slope * 0.01745)/0.09, 1.4) * 1.4];

C: Cover Management \& P: Support Practice

- Values from 0-1 (lower values = greater reduction in soil erosion)
- C: mature forests have low values, bare soil high values
- P: function of agricultural management practices; typically 1 for non-agricultural land cover types \& lower values with better crop management (terracing, contour farming, stone walls, grass margins)
- Typically classified by land cover type using a lookup table (Yang et al. 2003, Borelli et al. 2017 global references)
- Could use NDVI to estimate C

Model Assembly

- $\mathrm{A}=\mathrm{R}^{*} \mathrm{~K} * \mathrm{LS} * \mathrm{C} * \mathrm{P}$
- Calculating with all factor values gives potential soil loss
- Setting C \& P to the equivalent of bare soil (0.35 \& 1, respectively) gives potential soil loss without vegetation
- Difference between these two is the soil erosion control benefit provided by vegetation
- Actual soil loss would need to look at how much soil can leave a cell and travel downstream based on

Sharp et al. 2016
 hydrologic connectivity (e.g., InVEST model)

Avoided soil erosion $(\log +1)$

Examples of model customization

- Local data for land cover, slope, soils, climate
- Local RUSLE factor spatial data (U.S. Southwest)
- Local lookup tables for C \& P factors (InVEST parameter database)
- For all customizations, code in the conditions under which the customization should take place (Rwanda, East Africa, tropical rainforests, cities, temperate zones, etc...)

