Philosophy of globally customizable ES models

References

ĸ

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Towards globally customizable ecosystem service models

Javier Martínez-López ^{a,*}, Kenneth J. Bagstad ^b, Stefano Balbi ^a, Ainhoa Magrach ^a, Brian Voigt ^c, Ioannis Athanasiadis ^d, Marta Pascual ^a, Simon Willcock ^e, Ferdinando Villa ^{a,f}

- a BC3-Basque Centre for Climate Change, Sede Building 1, 1st floor, Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain
- ^b U.S. Geological Survey, Geosciences & Environmental Change Science Center, PO Box 25046, MS 980, Denver, CO 80225, USA
- ^c University of Vermont, Gund Institute for the Environment, 617 Main Street, Burlington, VT 05405, USA
- ^d Information Technology Group, Wageningen University, the Netherlands
- ^e School of Environment, Natural Resources and Geography, Bangor University, United Kingdom
- f IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

A user friendly access to ES modelling

- 1. ES-related user queries in a user-selected spatial and temporal context.
- 2. Queries can be entered in the Explorer interface as English sentences (or keywords)
- 3. Keywords call on logical statements (ontologies) that are conceptual models *resolved* with the data and algorithms available in the ARIES semantic web

Why are they needed?

- A conceptualization of ES supply and demand
- Rapid assessment
- No input/data preparation needed
- Models can run in any spatial context of the Earth with seasonal to annual temporal scale
- Customization of data, models and scenarios is currently possible using the k.LAB Modeler
 - soon with ARIES Explorer too

Current Contents

Fully specified model content concerning the following ES problem areas:

- Carbon storage
- Outdoors recreation
- Pollination
- Sediment retention
- Riverine flood regulation

Areas in development for a forthcoming release in the short term include:

- Mariculture suitability
- Water availability (based on hydrological calculations)
- Biodiversity value (based on machine learning of expert opinion)
- Crop yield production
- Forest timber production
- MicroHydro renewable energy production

What they are now

- Ready to use as a baseline but likely delivering a rough picture
- For all the queries, ARIES will build a spatially explicit observation,
 mostly raster GIS coverage of user-selected resolution.
- The results will reflect the contents of the ARIES semantic web at the time of query
 - nearly all supporting data are currently available at spatial resolution ranging between 1km and 90m.
- Not complexity oriented
 - → static and aggregated: as per InVEST/Estimap approaches

Global ES models

Carbon storage
Key methods:
Ruesch & Gibbs 2008

PollinationKey methods:
Zulian et al. 2013

Riverine flood regulation Key methods: Di Leo et al. 2011

Recreation
Key methods:
Paracchini et al. 2014

Flood regulation

Scalability, Context Awareness and Crowd-sourced Data

Waterways

Human Settlements

```
model each infrastructure: HumanSettlement
     "Automatically scales to find the types of settlements most relevant to each scale of observation."
     using
         gis.osm.query(
             feature-type="point",
             equal=("place", "city"))
            if [space.scale <= 5],</pre>
Θ
          gis.osm.query(
             feature-type="point",
             equal=("place", ("city", "town")))
           if [space.scale > 5 && space.scale < 9],</pre>
Θ
          gis.osm.query(
             feature-type="point",
              equal=("place", ("city", "town", "village")))
            if [space.scale >= 9];
```

e.g. Zoom Level

攻 italiano registrati entra

Pagina principale The map Map Features Contributors Aiuto Blogs Shop Donations Ultime modifiche

Puntano qui Modifiche correlate Pagine speciali Versione stampabile Link permanente Informazioni pagina

Cita questa pagina

Strumenti

Cerca all'interno di OpenStreetMap Wiki Q Pagina Discussione Leggi Visualizza wikitesto Cronologia

Zoom levels

· Deutsch · English · español · français · Nederlands · polski · português · Tiếng Việt · русский · українська

Available languages — Zoom levels

Other languages - Help us translate this wiki

Level	# Tiles	Tile width	m / pixel	~ Scale	Examples of			
		(° of longitudes)	(on Equator)	(on screen)	areas to represent			
0	1	360	156 412 13	1:500 million	whole world			
1	4	180	78 206	1:250 million				
2	16	90	39 103	1:150 million	subcontinental area			
3	64	45	19 551	1:70 million	largest country			
4	256	22.5	9 776	1:35 million				
5	1 024	11.25	4 888	1:15 million	large African country			
6	4 096	5.625	2 444	1:10 million	large European country			
7	16 384	2.813	1 222	1:4 million	small country, US state			
8	65 536	1.406	610.984	1:2 million				
9	262 144	0.703	305.492	1:1 million	wide area, large metropolitan area			
10	1 048 576	0.352	152.746	1:500 thousand	metropolitan area			
11	4 194 304	0.176	76.373	1:250 thousand	city			
12	16 777 216	0.088	38.187	1:150 thousand	town, or city district			
13	67 108 864	0.044	19.093	1:70 thousand	village, or suburb			
14	268 435 456	0.022	9.547	1:35 thousand				
15	1 073 741 824	0.011	4.773	1:15 thousand	small road			
16	4 294 967 296	0.005	2.387	1:8 thousand	street			
17	17 179 869 184	0.003	1.193	1:4 thousand	block, park, addresses			
18	68 719 476 736	0.001	0.596	1:2 thousand	some buildings, trees			
19	274 877 906 944	0.0005	0.298	1:1 thousand	local highway and crossing details			

- The "# Tiles" column indicates the number of tiles needed to show the entire world at the given zoom level. This is useful when calculating storage requirements for pre-generated tiles.
- . The "o Tile width" column gives the map width in degrees of longitude, for a square tile drawn at that zoom level.
- Values listed in the column "m / pixels" gives the number of meters per pixel at that zoom level. These values for "m / pixel" are calculated with an Earth radius of 6372.7982 km and hold at the Equator; for other latitudes the values must be multiplied by the cosine (approximately assuming a perfect spheric shape of the geoid) of the latitude.
- "~ Scale" is only an approximate size comparison and refers to distances on the Equator. In addition, the given scales assume that 256-pixel wide tiles are rendered and will be dependent on the

Distances per degree of longitude, for the latitudes marked in the picture.

Difference of longitudes		Actual distances									
		at	at 0° lat.		at 30° lat.		at 60° lat.		at 87.5° lat.		
0.01	0	~ 1	000 m	~ ;	870	m	~	500	m	~ /	43.62 m
0.001	0	~	100 m	~	87	m	~	50	m	~	4.36 m
0.000 1	0	~	10 m	~	8.7	m	~	5	m	~	0.44 m
0.000 01	0	~	1 m	~	0.87	7 m	~	0.5	5 m	~	0.04 m

What they can become

- The model content does not implement monolithic "models" of ES
- Starting point for improvement, also conceptual improvement
- Capture more complexity, including multi-agents networks and dynamic transitions
 - → this is the real PTB framework implementation
- We envision a critical role of remotely sensed data in the near future for real time and high frequency assessments

