Introduction to ARIES

Brian Voigt, Ken Bagstad, Zuzana Harmackova

ISU 2019 20 May 2019

Presentation outline

- Motivation and basic concepts
- ARIES overview
- Link to current ES-related challenges and developments

Why are we here? Motivation and basic concepts

Social-ecological systems

People-in-nature

- Complex, interlinked systems of nature and society
- Human well-being & economic prosperity highly dependent on natural capital

Ecosystem services

Crop provision

Timber provision

Water quality regulation

Climate regulation

Recreation potential

Spiritual enrichment

Types of ES

- Provisioning: material contributions from ecosystems
- Regulating: providing benign living conditions
- "Cultural": non-material contributions from ecosystems

From ecosystems to good quality of life

Knowledge

Chain from ES to beneficiaries

Spatial aspect of ES flows

Source areas

Flows

Beneficiaries

Types of values

Practice-relevant aspects of the ES concept

- Sustainable provision of ES?
- Governance of ES provision?
- ES co-production by nature and people
- (Spatial) mismatches between ES provision and beneficiaries?
- Telecoupling

ARIES basics and overview

Semantically annotated data

ARIES modelling environment

System of ontologies

Resulting ES

Semantically annotated models

Global models, complex models, ...

User-provided context

> Data and models "labelled" based on their meaning

```
model im:Potential value of behavior:Outdoor behavior:Recreation
         magnitude of proportion of behavior:Outdoor in behavior:Recreation named human_influence,
         distance to conservation:ProtectedArea in m named distance_to_pristine_areas,
         distance to earth:Coastline in m named distance_to_coast,
         distance to earth: Waterway in m named distance to streams,
         distance to earth: WaterBody in m named distance to lakes,
         distance to earth:MountainPeak in m named distance_to_mountains
              ((nodata(distance to pristine areas) ? 0 : distance to pristine areas)
               + (nodata(distance_to_lakes) ? 0 : distance_to_lakes)
              + (nodata(distance_to_streams) ? 0 : distance_to_streams)
              + (nodata(distance_to_mountains) ? 0 : distance_to_mountains)
               + (nodata(distance_to_coast) ? 0 : distance_to_coast))
```

Modeller interested in semantics: k.LAB Modeller

Quick ES assessment: k.EXPLORER

A decade of ARIES development

2007

2012 **BC3** 2013 **1st ISU**

US National

Science

Foundation

2017

Integrated Modelling Partnership 2018

k.EXPLORER

ARIES: Artificial Intelligence for Ecosystem Services

- http://aries.integratedmodelling.org
- Integration of multiple modelling techniques from multiple scientific fields
- Support of artificial intelligence (semantics, machine reasoning, machine learning)
- Connecting data and models from multiple sources
- Modelling and mapping of natural capital, natural processes, human beneficiaries, service flows to society
- Providing knowledge-base to value and manage the ecosystems

Integrated Modelling Partnership

- http://www.integratedmodelling.org
- Modelling paradigm suitable to address complex social-ecological problems
- Development and maintenance of:
 - A shared modelling environment to connect existing data and models
 - The k.IM semantic modeling language to define such an environment
 - The k.LAB software stack as an interface
 - Integrated development environment (IDE) geared to modelers
 - A set of web-based, end-user interfaces that for non-technical actors and decisionmakers

k. LAB software: "Knowledge Laboratory"

- Connecting data and models from multiple shared network repositories
 - Data and models from multiple users and disciplines
- Selection of the most suitable data and models guided by machine learning
- Aim: To serve a growing number of worldwide users from academia, governments, NGOs and industry

What is the added value of ARIES?

- Integrated ES assessment across scales
- Targeted at the needs of global, regional and local decision makers
- Holistic conceptualisation of ES flows
 - Addresses different ES-related discourses (ecosystem accounting, ES coproduction by ecosystems and human society, assessment of the sustainability of ES provision, ES trade-off analysis and scenario planning)
- Freely available online platform, based on open data- and model-sharing principles

... more in the following slides, presentations & course days

Addressing current ES-related challenges and developments

Current global processes requiring knowledge on ES

- Natural Capital Accounting initiatives
 - UNSD System of Environmental-Economic Accounting (SEEA)
 - World Bank Wealth Accounting and the Valuation of Ecosystem Services (WAVES)
- Science-policy interface
 - Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)
 - EU Mapping and assessment of ecosystems and their services (MAES)

Natural Capital Accounting

Economic performance of countries measured by **GDP**...

...but GDP does not capture use of natural capital, degradation and exploitation

Potential impacts on sustainable use of resources, economies and good quality of life

Natural Capital Accounting

Support for better economic management and inclusive development

Natural Capital Accounting

Natural Capital Accounting

Natural Capital Accounting

Natural capital

Stocks of natural resources

(land, water, fisheries, minerals, ...)

Ecosystems

Flows of natural resources

(timber, water, minerals, ...)

Flows of ecosystem services

Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)

- A UN-related platform established 2012, over 130 member countries
- Aims:
 - Undertaking international assessments,
 - Catalyzing knowledge generation,
 - Promoting the development and use of policy support tools,
 - Undertaking and facilitating capacity building.

Ecosystem Services

and/or/vs

Nature's Contributions to People

Diaz et al. 2018 Science

Global change and sustainability

Knowledge

What will I learn at this course?

- What is ARIES?
- What is the ARIES environment and available models?
- What technical principles is it based on?
- What results and knowledge can it provide?
- How does ARIES address the current practice and decision-making?
- Examples of applications
- How can I use ARIES to solve my (research) questions?

