Writing deterministic expressions for Thinklab using the Groovy programming language

In klab you can write a deterministid model using the Groovy programming language (http://groovy.codehaus.org/). Basic Groovy operators provides a great deal of flexibility for coding, with the potential to write powerful deterministic models.

The “on definition change to” or “on definition set to” statement directly precedes the square bracketed Groovy code.
· Use “on definition change to” when you want to use the current model’s name within the Groovy code.

· The “on definition set to” statement is used when this is not necessary.

Note that the model names must only contain lower-case characters and underscores. Hyphen-separated names are not allowed in Groovy code.
Primitive types: The following language elements can be recognized by Groovy:

	Type
	Example

	Integer
	5

	Floating point
	5.4

	String
	“hello isu”

	Boolean
	true, false

	Null
	null

Arithmetic operators can be used for anything from automating simple “raster calculator” operations to more complex deterministic functions.

	Operator
	Meaning

	+, -, *, /
	addition, subtraction, multiplication, division

	**
	exponentiation

	Math.log, Math.log10
	logarithms

	Math.PI, Math.E
	arithmetic constants

	Math.sin, Math.cos, Math.tan, Math.asin, Math.acos, Math.atan
	trigonometric functions

Many more mathematical functions can be found online at this URL:

 http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
Conditional expressions are the basic “if… then” statements. These are very useful in an intelligent, semantic system to ensure that the “right” data and models are used under the right circumstances. Relational operators are used to make a “test” that will return a true or false answer. The conditional expression is:

if (test) {true branch} else {false branch}

The else branch is optional.

The ternary operator provides a shorthand syntax for expressing basic conditional (if..then..else) statements. This syntax is as follows:

test ? then : else
Equality and Relational operators return a true/false result using Boolean logic. Note that a single = is not an equality operator in Groovy, so a double equals is needed.

	Operator
	Meaning

	==
	equals

	!=
	not equals

	<
	less than

	>
	greater than

	<=
	less than or equal to

	>=
	greater than or equal to

	&&
	union (logical or)

	||
	intersection (logical and)

	!
	negation (logical not)

Assignment operators can be used to set new conditions using certain input data. A good example is available at http://www.integratedmodelling.org/forum/viewtopic.php?f=16&t=81, where we use presence maps of several species within the same taxonomic group (doves) to create a map of the number of dove species whose habitat is present in each cell.
	Operator
	Meaning

	def
	Variable declaration (e.g., def x) (see dove habitat example)

	=
	Variable assignment (e.g., x = 1)

	+=, -=, *=, /=
	Add/subtract/multiply/divide and set (e.g., x +=5; x has already been set to 1 so result is 6

The last expression in the Groovy code block is the result. Expressions must be on different lines or be separated by a semicolon. Code blocks can be nested.
[image: image1.jpg]International Spring University

on Ecosystem
Services Modeling

www.bc3research.org/springuniversity | 2

